Έμβλημα Πολυτεχνείου Κρήτης
Το Πολυτεχνείο Κρήτης στο Facebook  Το Πολυτεχνείο Κρήτης στο Instagram  Το Πολυτεχνείο Κρήτης στο Twitter  Το Πολυτεχνείο Κρήτης στο YouTube   Το Πολυτεχνείο Κρήτης στο Linkedin

Νέα / Ανακοινώσεις / Συζητήσεις

Παρουσίαση Διπλωματικής Εργασίας κ. Νικολάου Χανταμπάκη - Σχολή ΗΜΜΥ

  • Συντάχθηκε 19-03-2025 08:42 Πληροφορίες σύνταξης

    Ενημερώθηκε: -

    Τόπος:
    Σύνδεσμος τηλεδιάσκεψης
    Έναρξη: 08/04/2025 09:00
    Λήξη: 08/04/2025 10:00

    ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
    Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
    Πρόγραμμα Προπτυχιακών Σπουδών

    ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

    Νικολάου Χανταμπάκη

    με θέμα
    Μηχανική Μάθηση για Χαμηλού Κόστους Πρόβλεψη Ηλιακής Ακτινοβολίας σε Ευρεία Περιοχή 
    Towards Broad, Low-Cost Solar Radiation Forecasting using Machine Learning

    Εξεταστική Επιτροπή
    Καθηγητής Γεώργιος Χαλκιαδάκης (επιβλέπων)
    Αναπληρωτής Καθηγητής Βασίλειος Σαμολαδάς (Σχολή ΗΜΜΥ, Πολυτεχνείο Κρήτης)
    Αναπληρωτής Καθηγητής Αθανάσιος Άρης Παναγόπουλος (Σχολή Πληροφορικής, California State University, Fresno)

    Περίληψη
    Τα τελευταία χρόνια, η πρόβλεψη ηλιακής ακτινοβολίας έχει γίνει αναπόσπαστο κομμάτι πλήθους τομέων, όπως, μεταξύ άλλων, η παραγωγή ενέργειας μέσω ανανεώσιμων πηγών και η παρακολούθηση της κλιματικής αλλαγής. Ως τώρα, οι σχετικές εργασίες γύρω από το θέμα είτε καλύπτουν πολύ μικρό χώρο, είτε είναι δυσπρόσιτες/μη προσβάσιμες από τον περισσότερο κόσμο, είτε χρησιμοποιούν χρονοσειρές μετρήσεων ηλιακής ακτινοβολίας ως εισόδους, βασιζόμενες στην ύπαρξη σχετικού εξοπλισμού στο σημείο-στόχο. Στην παρούσα διπλωματική εργασία, εξετάζουμε την αποδοτικότητα των νευρωνικών δικτύων εκπαιδευμένων με
    δεδομένα από διάφορες πηγές. Συγκεκριμένα, δημιουργούμε και ελέγχουμε ένα σύνολο μετρήσεων καιρικών συνθηκών από μεγάλο πλήθος σταθμών, ως πιο ενδεικτικό του τύπου δεδομένων στα οποία μπορούν να έχουν πρόσβαση μικρότερες οργανώσεις ή επιμέρους άτομα. Προτεραιοποιούμε τη χρήση τέτοιων μετρήσεων έναντι της χρήσης πιο προσαρμοσμένων δεδομένων. Αξιοποιούμε το σύνολο δεδομένων μας για να εκπαιδεύσουμε ένα πλήθος νευρωνικών δικτύων με διαφορετικές αρχιτεκτονικές, και αξιολογούμε τα αποτελέσματά τους ώστε να θέσουμε ένα πρότυπο προς βελτίωση σε μελλοντικές εργασίες που θα χρησιμοποιούν ένα παρόμοιο σύνολο δεδομένων. Τα αποτελέσματα δείχνουν ότι ακόμη και με ένα πολύ μεγαλύτερο/ευρύτερο σύνολο δεδομένων από όσα έχουν χρησιμοποιηθεί ως τώρα, συγκεκριμένες στοχευμένες υλοποιήσεις νευρωνικών δικτύων μπορεί να είναι αποτελεσματικές στο συγκεκριμένο πρόβλημα.

    Abstract 
    In the past few years, solar radiation prediction has been paramount in a multitude of sectors, from energy production via renewable energy sources, to tracking climate change, among others. So far, work in the area lacks in large area coverage, ease of access, or uses past solar radiation readings, relying on related equipment being already on-site. In this work, we provide insight into the efficacy of neural networks in the area, accompanied with data sourced from varying providers. In order to achieve this, we create and vet a weather reading dataset from a large variety of stations, which are more indicative of what smaller organizations or individuals may have access to, instead of more tailored datasets. We utilize this dataset to train a number of neural networks, each with different architectures, and evaluate their results so as to set a standard to be improved upon in later work utilizing a similar type of dataset. The results indicate that, even utilizing a much broader dataset than what has been used in the past, neural networks show promise in this area, especially with more targeted implementations.



© Πολυτεχνείο Κρήτης 2012