Έμβλημα Πολυτεχνείου Κρήτης
Το Πολυτεχνείο Κρήτης στο Facebook  Το Πολυτεχνείο Κρήτης στο Instagram  Το Πολυτεχνείο Κρήτης στο Twitter  Το Πολυτεχνείο Κρήτης στο YouTube   Το Πολυτεχνείο Κρήτης στο Linkedin

Νέα / Ανακοινώσεις / Συζητήσεις

Παρουσίαση Διπλωματικής Εργασίας κας Ηλιοδώρας Σεφερλή - Σχολή ΗΜΜΥ

  • Συντάχθηκε 06-09-2024 13:03 Πληροφορίες σύνταξης

    Ενημερώθηκε: -

    Τόπος:
    Σύνδεσμος τηλεδιάσκεψης
    Έναρξη: 12/09/2024 14:00
    Λήξη: 12/09/2024 15:00

    ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
    Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
    Πρόγραμμα Προπτυχιακών Σπουδών

    ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

    Ηλιοδώρας Σεφερλή

    με θέμα

    Διαδραστική Δημιουργία Ιστοριών με Χρήση Τεχνικών Φιλτραρίσματος βάσει Περιεχομένου 

    Interactive Story Generation via Content-Based Filtering

    Εξεταστική Επιτροπή
    Καθηγητής Γεώργιος Χαλκιαδάκης (επιβλέπων)
    Καθηγητής Μιχαήλ Λαγουδάκης
    Αναπληρωτής Καθηγητής Στέργος Αφαντενός 

    Περίληψη

    Η παρούσα διπλωματική εργασία πραγματεύεται την ανάπτυξη ενός διαδραστικού συστήματος παραγωγής ιστοριών μέσω της εφαρμογής τεχνικών φιλτραρίσματος βάσει περιεχομένου. Ο κύριος στόχος είναι να σχεδιαστεί ένας δυναμικός μηχανισμός αφήγησης (στην αγγλική καθομιλουμένη, ένας dungeon master - DM) ικανός να προβλέπει και να δημιουργεί αφηγηματικές διαδρομές ευθυγραμμισμένες με τις προτιμήσεις των χρηστών. Αξιοποιώντας τεχνικές αναπαράστασης κειμένου όπως ο αλγόριθμος Term Frequency-Inverse Document Frequency(TF-IDF) και Class Label Frequency Distance (CLFD) , το σύστημα εκπαιδεύεται σε ένα σύνολο δεδομένων που περιλαμβάνει περιλήψεις βιβλίων και τα αντίστοιχα είδη τους.

    Η μελέτη μας αξιολογεί την αποτελεσματικότητα μεθόδων ταξινόμησης όπως Logistic Regression, Support Vector Machines (SVM), Multi-Layer Perceptron (MLP), Random Forest, και Naive Bayes στη βελτίωση της ικανότητας του DM να κατανοεί και να προβλέπει αφηγηματικά στοιχεία εντός συγκεκριμένων κεφαλαίων. Εξετάζεται επίσης η χρήση μεθόδων συσταδοποίησης για να διαπιστωθεί αν η ενσωμάτωση κεφαλαίων χωρίς ετικέτες θα παρέχει καλύτερα αποτελέσματα. Εξετάζοντας και τις δύο προσεγγίσεις, η έρευνα μας στόχευε στον εντοπισμό της πιο αποτελεσματικής στρατηγικής για τον DM να κατηγοριοποιεί και να δημιουργεί περιεχόμενο που να ανταποκρίνεται στις προτιμήσεις των χρηστών. Η αξιολόγηση αυτών των μεθόδων περιελάμβανε τόσο υπολογιστικά πειράματα, όσο και την αξιοποίηση πραγματικών χρηστών που αλληλοεπίδρασαν με το σύστημα, επιλέγοντας διαδρομές στην ιστορία που καθορίστηκαν από τον DM βάσει των ταξινομικών του ικανοτήτων. Για το σκοπό αυτό, παρέχουμε ένα γραφικό περιβάλλον όπου οι χρήστες μπορούν να διαβάσουν και να επιλέξουν τη δική τους διαδρομή. 

    Συγκεκριμένα, τα πειραματικά αποτελέσματα για τις μεθόδους ταξινόμησης δείχνουν ότι η Λογιστική Παλινδρόμηση είναι η ταχύτερη και πιο αποτελεσματική μέθοδος για την ακριβή αναγνώριση κάθε ετικέτας διαδρομής. Δοκιμάσαμε τη θεωρία μας με δύο διαφορετικά σύνολα δεδομένων που περιλαμβάνουν περιλήψεις βιβλίων με διαφορετικό αριθμό εγγράφων, εξετάζοντας πώς διαφέρουν τα αποτελέσματα με τη χρήση μεγαλύτερων συνόλων δεδομένων. Επιπλέον, δείχνουμε πειραματικά ότι η προσέγγιση CLFD είναι καλύτερη για την αναπαράσταση κειμένου για είδη που εμφανίζονται ως πολλαπλά ετικετοποιημένα. Λάβαμε αξιολογήσεις για τις συστάσεις διαδρομών του συστήματος και πώς το πρόγραμμα λειτουργεί συνολικά για αυτούς. Εν κατακλείδι, πιστεύουμε ότι η εργασία μας συμβάλλει στον τομέα της διαδραστικής αφήγησης παρέχοντας πληροφορίες σχετικά με την εφαρμογή προηγμένων τεχνικών αναπαράστασης κειμένου και μηχανικής μάθησης για την παραγωγή αφηγηματικών διαδρομών. Υπογραμμίζει τη σημασία της κατανόησης των προτιμήσεων των χρηστών και προσφέρει ένα πλαίσιο για την ανάπτυξη ευφυών DM ικανών να παρέχουν εξατομικευμένες αφηγηματικές διαδρομές.

    Abstract 

    This thesis explores the development of an interactive story generation system through the application of content-based filtering techniques. The primary goal is to design a dynamic storytelling mechanism (colloquially known as a “dungeon master” - DM) capable of predicting and generating narrative paths aligned with user preferences. Leveraging text vectorization techniques such as Term Frequency-Inverse Document Frequency (TF-IDF) and Class Label Frequency Distance (CLFD), the system is trained on a dataset comprising
    book summaries and their associated genres.

    The study evaluates the efficacy of classification methods such as Logistic Regression, Support Vector Machines (SVM), Multi-Layer Perceptron (MLP), Random Forest, and Naive Bayes in enhancing the DM’s ability to comprehend and predict narrative elements within specific chapters. The use of clustering methods is also examined to determine if the inclusion of the non-labeled chapters will provide better results. By examining both approaches, our thesis work manages to identify the most effective strategy for the DM to categorize and generate content that resonates with users’ tastes. The evaluation of our methods was conducted both in silico but also via the involvement of real users who interacted with the system, choosing paths in the story determined by the DM based on its classification capabilities. To this end, we also provided a graphical interface where users can read and choose their own path.

    Specifically, experimental results for the classification methods indicate that Logistic Regression is the fastest and most effective method for accurately recognizing each path label. We tested our system with two different datasets containing book summaries with different numbers of documents, examining how the results differ with the use of larger datasets. Additionally, we show experimentally that the CLFD approach is better for text vectorization for genres that appear to be multi-labeled. We received user evaluations for its path recommendations and how the framework overall works for them.

    In summary, our work contributes to the field of interactive storytelling by providing insights into the application of advanced text vectorization and machine learning techniques for narrative generation. It highlights the importance of understanding user preferences and offers a framework for developing intelligent DMs capable of delivering customized story paths.



© Πολυτεχνείο Κρήτης 2012