Έμβλημα Πολυτεχνείου Κρήτης
Το Πολυτεχνείο Κρήτης στο Facebook  Το Πολυτεχνείο Κρήτης στο Instagram  Το Πολυτεχνείο Κρήτης στο Twitter  Το Πολυτεχνείο Κρήτης στο YouTube   Το Πολυτεχνείο Κρήτης στο Linkedin

Νέα / Ανακοινώσεις / Συζητήσεις

Παρουσίαση Διπλωματικής Εργασίας κ. Ροδίτη Ιωάννη - Σχολή ΗΜΜΥ

  • Συντάχθηκε 07-08-2020 09:49 Πληροφορίες σύνταξης

    Ενημερώθηκε: 07-08-2020 14:58

    Τόπος: Η παρουσίαση θα γίνει με τηλεδιάσκεψη
    Σύνδεσμος τηλεδιάσκεψης
    Έναρξη: 17/08/2020 11:00
    Λήξη: 17/08/2020 12:00

     

    ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
    Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
    Πρόγραμμα Προπτυχιακών Σπουδών

    ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
    ΙΩΑΝΝΗΣ ΡΟΔΙΤΗΣ

    θέμα

    Εφαρμογή Μεθόδων Νευρο-Ασαφούς Λογικής για την Βέλτιστη Διαχείριση Φόρτισης-Εκφόρτισης Συσσωρευτών Λιθίου
    Application of Neuro-Fuzzy Methods for the Optimal Management of the Charging and Discharging of Lithium Batteries

    Εξεταστική Επιτροπή
    Καθηγητής Γεώργιος Σταυρακάκης (επιβλέπων)
    Αναπληρωτής Καθηγητής Ευτύχιος Κουτρούλης
    Δρ Ελευθερία Σεργάκη (μέλος ΕΔΙΠ)

    Περίληψη

    Κατά την διάρκεια της τελευταίας δεκαετίας, η αποθήκευση ενέργειας συνεχίζει να αναπτύσσεται και να προσαρμόζεται στις ενεργειακές απαιτήσεις. Μια ηλεκτρική μορφή αποθήκευσης ενέργειας που χρησιμοποιείται ευρέως είναι η μπαταρία. Για να επιτευχθεί αποτελεσματική αποθήκευση ενέργειας σε μια μπαταρία η διαρκείς (online) και ορθή εκτίμηση της κατάστασης φόρτισής της είναι απαραίτητη. Επιπρόσθετα, οι τελευταίας τεχνολογίας μπαταρίες χαρακτηρίζονται ως πολύπλοκα τεχνολογικά σύστημα. Για να μοντελοποιηθεί-προσομοιωθεί ένα τέτοιο σύστημα εφαρμόζονται αλγόριθμοι νευρωνικών δικτύων, ασαφούς και νευροασαφούς λογικής. Στη συγκεκριμένη διπλωματική εργασία, αρχικά, αναπτύσσονται τρεις εφαρμογές, στις οποίες γίνεται χρήση της μπαταρίας (λειτουργία φόρτισης, εκφόρτισης και λειτουργία ηλεκτρικού οχήματος). Από την προσομοίωσή τους παρήχθησαν τα απαραίτητα πειραματικά δεδομένα για την εκπαίδευση (training) και την αξιολόγηση (evaluation) του προτεινόμενου αλγορίθμου, ο οποίος βασίζεται σε ένα προσαρμοζόμενο σύστημα νευροασαφούς λογικής. Με την χρησιμοποίηση του συγκεκριμένου αλγορίθμου, η κατάσταση φόρτισης-εκφόρτισης μιας μπαταρίας ιόντων λιθίου μπορεί να προβλεφθεί για τις τρεις διαφορετικές λειτουργίες της (λειτουργία φόρτισης, εκφόρτισης και λειτουργία ηλεκτρικού οχήματος). Συγκεκριμένα, επιτυγχάνεται εκτίμηση της κατάστασης φόρτισης μιας μπαταρίας λιθίου με την προτεινόμενη τεχνική νευροασαφούς λογικής, όπου συγκρίνεται η κατάσταση φόρτισης που προκύπτει από την τεχνική με την κατάσταση φόρτισης, που έχει ληφθεί από τα πειραματικά δεδομένα για κάθε σύστημα ξεχωριστά (λειτουργία φόρτισης, εκφόρτισης και λειτουργία ηλεκτρικού οχήματος). Η προσομοίωση όλων των συστημάτων, καθώς και ο αλγόριθμος προσαρμοζόμενης νευροασαφούς λογικής αναπτύχθηκαν στο Matlab/Simulink. Τα αποτελέσματα των προσομοιώσεων επιβεβαιώνουν την προτεινόμενη μεθοδολογία, όταν συγκρίνονται με αντίστοιχες μελέτες της βιβλιογραφίας, διότι επιτυγχάνει καλύτερη απόδοση σε ικανοποιητικό χρόνο. Για διαφορετικές ομάδες δεδομένων εισόδου, το λάθος πρόβλεψης (root mean square error) της κατάστασης φόρτισης της μπαταρίας κυμαίνονταν από 0.061 έως 0.064, από 0.24 έως 0.3 για την λειτουργία συστήματος εκφόρτισης και από 2.81 έως 2.85 για την λειτουργία ηλεκτρικού οχήματος. Επίσης, ο χρόνος εκτέλεσης του προτεινόμενου αλγορίθμου είναι της τάξης μονοψήφιου αριθμού milliseconds (2msec) για την λειτουργία φόρτισης και εκφόρτισης και κάποια δευτερόλεπτα (50sec) για την λειτουργία ηλεκτρικού οχήματος.  

    Abstract 
    Over the last decade, energy storage has continued to evolve and adapt to energy requirements. The battery is a widely used electrical energy storage system. To achieve an efficient battery storage system an online and correct estimation of the state of charge is essential. Furthermore, state-of-the-art batteries can be characterized as a complex technological system. In order to model and/or simulate such systems, neural networks, fuzzy logic and Adaptive Neuro Fuzzy Inference Systems are often utilized. In this thesis, firstly, three systems (charging, discharging and electric vehicle operation) using batteries are introduced. Battery system data were produced through simulations for the training and evaluation of the proposed algorithm, based on a modified neuro fuzzy logic system. By using this algorithm the state of charge can be predicted for the three different operations of the lithium-ion battery (charging, discharging and electric vehicle operation). Specifically, in this work an Adaptive Neuro Fuzzy Inference System is implemented in order to predict the state of charge of the lithium battery. Consequently, the estimated state of charge is compared with the state of charge from the experimental data for validation (charging, discharging and electric vehicle operation). All the simulated systems and the adaptive neuro fuzzy inference system were implemented in Matlab/Simulink. The simulation results when compared to relevant studies validated the model developed in this project, as they achieve better performance in satisfactory time. For a variety of different input data sets, the prediction error (root mean square error) for the battery state of charge ranged from 0.061 to 0.064 for charging system, from 0.24 to 0.3 for discharging and from 2.81 to 2.85 for electric vehicle. In addition, the proposed algorithm has an average runtime of some milliseconds (2msec) for the charging and discharging systems and a few seconds (50sec) for electric vehicle.

     

    Meeting ID: 944 6116 0874
    Password: 666666

     


© Πολυτεχνείο Κρήτης 2012