Έμβλημα Πολυτεχνείου Κρήτης
Το Πολυτεχνείο Κρήτης στο Facebook  Το Πολυτεχνείο Κρήτης στο Instagram  Το Πολυτεχνείο Κρήτης στο Twitter  Το Πολυτεχνείο Κρήτης στο YouTube   Το Πολυτεχνείο Κρήτης στο Linkedin

Νέα / Ανακοινώσεις / Συζητήσεις

Παρουσίαση Μεταπτυχιακής Εργασίας κ. Καρακάση Πάρι - Σχολή ΗΜΜΥ

  • Συντάχθηκε 12-12-2019 08:45 Πληροφορίες σύνταξης

    Ενημερώθηκε: -

    θέμα: Τεχνικές Μηχανικής Μάθησης με Εφαρμογές στην Επεξεργασία Βιοϊατρικών Σημάτων (Machine Learning Techniques with Applications in Biomedical Signal Processing)

    Εξεταστική Επιτροπή:

    Καθηγητής Αθανάσιος Π. Λιάβας (επιβλέπων)

    Καθηγητής Γεώργιος Καρυστινός

    Καθηγητής Μιχαήλ Ζερβάκης

    Περίληψη

     Η λειτουργική απεικόνιση μαγνητικού συντονισμού (fMRI) είναι μία από τις πιο δημοφιλείς μεθόδους για τη μελέτη του ανθρώπινου εγκεφάλου. Ο σκοπός της ανάλυσης δεδομένων fMRI, τα οποία σχετίζονται με μία συνθήκη/εργασία, είναι ο εντοπισμός εγκεφαλικών περιοχών οι οποίες ενεργοποιούνται όταν επιτελείται μία συγκεκριμένη συνθήκη/εργασία, με βάση την ανάλυση των ΒOLD (Blood Oxygen Level Dependent) σημάτων. Τα BOLD σήματα παρουσιάζουν συστηματικές μεταβολές στη δραστηριότητα του εγκεφάλου, ακόμα και στην απουσία ερεθίσματος (κατάσταση ηρεμίας), οι οποίες αποδίδονται στην ύπαρξη εγκεφαλικών δικτύων σε κατάσταση ηρεμίας (resting-state brain networks).

    Ένα ευρύ φάσμα πολυμεταβλητών στατιστικών μεθόδων χωρίς επίβλεψη χρησιμοποιείται, όλο και περισσότερο, στην επεξεργασία σημάτων fMRI. Ο κύριος σκοπός των μεθόδων αυτών είναι η εξαγωγή πληροφοριών από μια συλλογή δεδομένων, συνήθως, δίχως πρότερη γνώση για τις συνθήκες του πειράματος. Η Γενικευμένη Ανάλυση Κανονικής Συσχέτισης (generalized Canonical Correlation Analysis - gCCA) είναι μια δημοφιλής στατιστική μέθοδος, η οποία μπορεί να θεωρηθεί ως μία μέθοδος εκτίμησης ενός γραμμικού υποχώρου κοινoύ σε όλα τα δεδομένα μιας συλλογής τυχαίων διανυσμάτων. Στην εργασία αυτή, προτείνουμε ένα νέο μοντέλο για την περιγραφή δεδομένων fMRI, το οποίο λαμβάνει υπόψιν την ύπαρξη κοινών συνιστωσών που σχετίζονται τόσο με την κατάσταση ηρεμίας όσο και με την παρουσία ερεθίσματος. Επιπλέον, υπολογίζουμε αυτές τις κοινές συνιστώσες μέσω της Γενικευμένης Ανάλυσης Κανονικής Συσχέτισης. Εφαρμόζουμε τη θεωρητική μας προσέγγιση σε συνθετικά και πραγματικά fMRI δεδομένα. Παρατηρούμε ότι τα ευρήματά μας επιβεβαιώνουν τα θεωρητικά μας αποτελέσματα, το οποίο καθιστά την προσέγγισή μας μια πολύ καλή εναλλακτική για την επεξεργασία fMRI δεδομένων από πολλαπλά υποκείμενα.

    Abstract

    Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. The purpose of task-related fMRI data analysis is to determine which brain areas are activated when a specific task is performed, based on the (Blood Oxygen Level Dependent) signal analysis. Background BOLD signal reflects systematic fluctuations in regional brain activity that are attributed to the existence of resting-state brain networks.

     A wide range of unsupervised multivariate statistical methods is being increasingly employed in fMRI data analysis. The main goal of these methods is to extract information from a dataset, often with no prior knowledge of the experimental conditions. Generalized canonical correlation analysis (gCCA) is a well known statistical method, that can be considered as the method for the estimation of a linear subspace, which is ”common” to multiple sets of random vectors. We propose a new fMRI data generating model, which takes into consideration the existence of common task-related and rest-related components. Moreover, we  estimate the task-related components via gCCA. We extensively test our theoretical results using both artificial and real-world fMRI data. We observe that our experimental findings corroborate our theoretical results, rendering our approach a very good candidate for multi-subject task-related fMRI processing.

     


    Τόπος: Λ - Κτίριο Επιστημών/ΗΜΜΥ, ΑΙΘΟΥΣΑ ΣΥΝΕΔΡΙΑΣΕΩΝ
    Έναρξη: 13/12/2019 15:30
    Λήξη: 13/12/2019 16:30


© Πολυτεχνείο Κρήτης 2012