Έμβλημα Πολυτεχνείου Κρήτης
Το Πολυτεχνείο Κρήτης στο Facebook  Το Πολυτεχνείο Κρήτης στο Instagram  Το Πολυτεχνείο Κρήτης στο Twitter  Το Πολυτεχνείο Κρήτης στο YouTube   Το Πολυτεχνείο Κρήτης στο Linkedin

Νέα / Ανακοινώσεις / Συζητήσεις

Παρουσίαση Διπλωματικής Εργασίας κ. Κασφίκη Κωνσταντίνου - Σχολή ΗΜΜΥ

  • Συντάχθηκε 02-12-2019 13:34 Πληροφορίες σύνταξης

    Ενημερώθηκε: -

    Θέμα:  Αναδιατασσόμενη υλοποίηση και αξιολόγηση της Bit Pragmatic Inference μηχανής βαθιάς μάθησης (Reconfigurable implementation and evaluation of the Bit Pragmatic Deep Learning Inference engine)

    Εξεταστική Επιτροπή:

    Καθηγητής  Απόστολος Δόλλας  (επιβλέπων)

    Καθηγητής  Μιχάλης Ζερβάκης

    Καθηγητής  Διονύσιος Πνευματικάτος (Σχολή ΗΜΜΥ, ΕΜΠ)

    Περίληψη:

    Τα τελευταία χρόνια τα Συνελικτικά Νευρωνικά Δίκτυα (ΣΝΔ) έχουν δείξει εξαιρετικά αποτελέσματα σε σύνθετα προβλήματα αναγνώρισης εικόνων. Έχουν υιοθετηθεί επί του παρόντος για την επίλυση ενός συνεχώς αυξανόμενου αριθμού προβλημάτων, που κυμαίνονται από την αναγνώριση της φωνής έως την κατάτμηση και ταξινόμηση της εικόνας. Η συνεχής αύξηση του όγκου επεξεργασίας που απαιτείται από ΣΝΔ δημιουργεί το πεδίο για τις μεθόδους υποστήριξης υλικού, προκειμένου να μειωθούν περαιτέρω οι χρόνοι εκτέλεσης. Το πλήθος των ερευνών για την Μηχανική Μάθηση και ειδικά για τα ΣΝΔ, που υλοποιούνται σε πλατφόρμες FPGA, καταδεικνύει το τεράστιο βιομηχανικό και ακαδημαϊκό ενδιαφέρον.

    Αυτή η εργασία παρουσιάζει την σχεδίαση και την υλοποίηση ενός Inference Accelerator για ΣΝΔ σε FPGA χρησιμοποιώντας την τεχνική Bit Pragmatic. Με την επιτάχυνση της λειτουργίας βασικών δομικών επιπέδων που συναντώνται σε κάθε ΣΝΔ, επιτυγχάνεται η επιτάχυνση της συνολικής λειτουργίας του υπό εξέταση ΣΝΔ. Παρουσιάζεται η βασική δομή του εν λόγω Accelerator, ο οποίος αναπτύχθηκε με γνώμονα να είναι λειτουργικός ακόμα και σε FPGA μέτριων δυνατοτήτων. Γίνεται επαλήθευση των αποτελεσμάτων του και έπειτα αναλύεται η βελτιστοποίηση των επιδόσεων του, χρησιμοποιώντας παραλληλισμό σε εσωτερικά δομικά modules, με την μεταφορά της σχεδίασης σε υψηλότερων δυνατοτήτων FPGA. Οι επιδόσεις του συστήματος, ειδικά με την χρήση παραλληλισμού, υπερβαίνουν τις αντίστοιχες επιδόσεις της CPU i7 -8700K ενώ είναι συγκρίσιμες με υπάρχουσες υλοποιήσεις σε FPGA.


    Τόπος: Λ - Κτίριο Επιστημών/ΗΜΜΥ, 137Π-39,-38
    Έναρξη: 04/12/2019 12:00
    Λήξη: 04/12/2019 13:00


© Πολυτεχνείο Κρήτης 2012