Συντάχθηκε 31-01-2018 09:01
από Sofia Malandraki
Email συντάκτη: sofiamalandraki<στο>tuc.gr
Ενημερώθηκε:
-
Ιδιότητα: υπάλληλος ΗΜΜΥ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Πρόγραμμα Προπτυχιακών Σπουδών
ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
ΦΙΛΙΠΠΟΥ ΚΑΛΟΜΟΙΡΗ
με θέμα
Απεικόνιση Συμβολοκηλίδων Λέιζερ για μη Καταστρεπτική Ανάλυση
Laser Speckle Imaging for non-Destructive Analysis
Πέμπτη 1 Φεβρουαρίου 2018, 13:00
137.Β37 Εργαστήριο Ηλεκτρονικής, Λ - Κτίριο Επιστημών/ΗΜΜΥ, Πολυτεχνειούπολη
Εξεταστική Επιτροπή
Καθηγητής Κωνσταντίνος Μπάλας (επιβλέπων)
Καθηγητής Κωνσταντίνος Καλαϊτζάκης
Δρ. Ναθαναήλ Κορτσαλιουδάκης
Abstract
When coherent light illuminates a diffuse object, it produces a random interference effect known as a speckle pattern. If there is movement in the object either by auto stimulation (e.g. blood flow) or by an external stimulation (e.g. acoustic, thermal, impact) then the speckles fluctuate in intensity. These fluctuations can provide information about the movement. Laser Speckle Imaging is a non-destructive, non-contact, full-field technology that can access these information and build a movement map of the object. This technique has recently become a powerful tool for scientific and industrial analysis in many different fields. Its applications range from non-contact surface analysis and archeology to biomedical science. The work presented in this thesis deals with the design of a Laser Speckle Imaging device that performs, non-contact analysis in impact and acoustic stimulated surfaces, generating spatial and temporal movement mapping with pseudocolors. The implementation employs a sensitive camera, a coherent light source, a light expander, a stimulator and the surface we want to analyze. The light source illuminates the surface and speckle pattern is produced. This pattern is changed by the stimulator and measurements have been recorded with the camera before and during the stimulation. The aforementioned implemented device accomplishes two analyses in order to achieve both spatial and temporal resolution. It also quantifies the stimulation's intensity with no information about the stimulator. These features make our approach ideal for demanding laser speckle imaging applications, such as non-destructive analysis and non-invasive diagnosis.