Συντάχθηκε 25-07-2017 11:26
από Vasiliki Grigoraki
Email συντάκτη: vgrigoraki<στο>tuc.gr
Ενημερώθηκε:
26-07-2017 12:09
Κύρια: υπάλληλος ΗΜΜΥ.
Άλλες ιδιότητες: Unknown -#-@ΗΜΜΥ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Πρόγραμμα Μεταπτυχιακών Σπουδών
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ
ΔΕΣΠΟΙΝΑΣ ΓΕΩΡΓΙΑΔΟΥ
με θέμα
Στατιστικές Μέθοδοι για Συστήματα Φωνητικού Διαλόγου
Εξεταστική Επιτροπή
Καθηγητής Βασίλειος Διγαλάκης (επιβλέπων)
Αναπληρωτής Καθηγητής Λαγουδάκης Μιχαήλ
Δρ. Βασίλειος Διακολουκάς
Περίληψη
Η αυτόματη κατανόηση της ομιλίας περιλαμβάνει μια σειρά από διαδικασίες. Ανάμεσα τους μία από τις κυριότερες και πιο δύσκολες είναι η εξαγωγή σημαντικής πληροφορίας (slot-filling). Τα τελευταία χρόνια, οι καλύτερες προσεγγίσεις σε αυτόν τον τομέα βασίζονται σε νευρωνικά δίκτυα με ανατροφοδότηση (RNNs). Ωστόσο, όταν χρησιμοποιούνται στην απλούστερη μορφή τους τα RNNs, δεν μπορούν να μάθουν αποδοτικά τις εξαρτήσεις που υπάρχουν σε μεγάλες χρονικά αποστάσεις στα δεδομένα. Σε αυτή την εργασία, προτείνουμε τη χρήση αρχιτεκτονικών ClockWork νευρωνικών δικτύων με ανατροφοδότηση (CW-RNN) για τη διαδικασία του slot-filling. Το CW-RNN είναι μια παραλλαγή της αρχιτεκτονικής RNN στην οποία εφαρμόζονται πολλαπλοί χρονισμοί στην ανατροφοδότηση συγκεκριμένων ομάδων από νευρώνες. Η αρχιτεκτονική CW-RNN έχει αποδειχθεί ότι είναι πολύ αποδοτική παρότι διατηρεί σχετικά μικρή πολυπλοκότητα. Επιπλέον, το CW-RNN έχει εγγενώς πολύ μεγαλύτερη ικανότητα να μοντελοποιεί εξαρτήσεις σε χρονικά μεγάλες αποστάσεις. Για τα πειράματά μας με την αρχιτεκτονική CW-RNN επιλέξαμε τα δεδομένα αναφοράς από το Air Travel Information System (ATIS). Παράλληλα προτείνουμε αρκετές καινοτόμες εκδοχές του CW-RNN και διαπιστώνουμε ότι υπερτερούν σημαντικά των απλών RNN αφού επιτυγχάνουν σημαντικά καλύτερα αποτελέσματα, διατηρώντας ταυτόχρονα μικρότερη πολυπλοκότητα.
Abstract
A prevalent and challenging task in spoken language understanding is slot filling. Currently, the best approaches in this domain are based on recurrent neural networks (RNNs). However, in their simplest form, RNNs cannot learn long-term dependencies in the data. In this paper, we propose the use of ClockWork recurrent neural network (CW-RNN) architectures in the slot-filling domain. CW-RNN is a multi-timescale implementation of the simple RNN architecture, which has proven to be powerful since it maintains relatively small model complexity. In addition, CW-RNN exhibits a great ability to model long-term memory inherently. In our experiments on the ATIS benchmark data set, we also evaluate several novel variants of CW-RNN and we find that they significantly outperform simple RNNs and they achieve results among the state-of-the-art,
Τόπος: Λ - Κτίριο Επιστημών/ΗΜΜΥ, 145Π-42
Έναρξη: 26/07/2017 10:00
Λήξη: 26/07/2017 11:00