Έμβλημα Πολυτεχνείου Κρήτης
Το Πολυτεχνείο Κρήτης στο Facebook  Το Πολυτεχνείο Κρήτης στο Instagram  Το Πολυτεχνείο Κρήτης στο Twitter  Το Πολυτεχνείο Κρήτης στο YouTube   Το Πολυτεχνείο Κρήτης στο Linkedin

Νέα / Ανακοινώσεις / Συζητήσεις

Ομιλία prof. Christiana Amza, Τρίτη 6/6 ώρα 11:30. Αμφ. κτ. Επιστ, "Semantic-Aware Anomaly Detection in Data Centers and Clouds"

  • Συντάχθηκε 29-05-2017 11:00 από Evripidis Petrakis Πληροφορίες σύνταξης

    Email συντάκτη: epetrakis<στο>tuc.gr

    Ενημερώθηκε: -

    Ιδιότητα: ΔΕΠ ΗΜΜΥ.
    Την ερχόμενη Τρίτη 6 Ιουνίου, στις 11:30 στο Αμφιθέατρο του κτ.
    Επιστημών, η κ. Christiana Amza θα δώσει ομιλία
    με θέμα "Semantic-Aware Anomaly Detection in Data Centers and Clouds".

    Semantic-Aware Anomaly Detection in Data Centers and Clouds

    Modern Cloud and Data Center environments are based on large scale
    distributed storage systems. Diagosing configuration errors, software
    bugs and performance anomalies in such systems has become a major
    problem for large Web hosting sites.

    As part of a larger project, which endeavors to design and prototype
    interactive, guided modelling for such systems I will introduce
    Semantic-Aware Resource Anomaly Detection (SARAD), and Program-Aware
    Anomaly Detection (PAAD), two low overhead real-time solutions for
    detecting runtime anomalies in storage systems. Both SARAD and PAAD are
    based on the key observation that most state-of-the-art storage server
    architectures are multi-threaded and structured as a set of repeatable
    modules, which we call stages, hence provide good opportunities for
    statistical modelling and anomaly detection.

    SARAD and PAAD leverage this observation to collect stage-level resource
    consumption and log summaries at runtime and to perform statistical
    analysis across stage instances. Stages that generate either one of i)
    abnormal resource usage patterns, or ii) rare execution flows or
    unusually high duration for regular flows at run-time indicate
    anomalies. Both methods make two key contributions: i) limit the search
    space for root causes, by pinpointing specific anomalous code stages,
    and ii) reduce compute and storage requirements for monitoring data and
    log analysis, while preserving accuracy, through information summarization.

    We evaluated both methods on three distributed storage systems: HBase,
    Hadoop Distributed File System (HDFS), and Cassandra. We show that, with
    practically zero overhead, we uncover various anomalies in real-time.


    Bio: Cristiana Amza received her B.S. degree in Computer
    Engineering from Bucharest Polytechnic Institute in 1991, the M.S. and
    the Ph.D. degrees in Computer Science from Rice University in 1997 and
    2003 respectively. Her research interests are in the area of distributed
    and parallel systems, with an emphasis on designing, prototyping and
    experimentally evaluating novel algorithms and tools for self-managing,
    self-adaptive and self-healing behavior in data centers and Clouds. She
    joined the Department of Electrical and Computer Engineering at
    University of Toronto in October 2003 as an Assistant Professor and
    became an Associate Professor in July 2009. She is actively
    collaborating with several industry partners, including Intel, NetApp,
    Bell Canada, and IBM through IBM T.J. Watson, Almaden and IBM Toronto Labs.

  • Συντάχθηκε 06-06-2017 11:43 από Michail Lagoudakis Πληροφορίες σύνταξης

    Email συντάκτη: lagoudakis<στο>tuc.gr

    Ενημερώθηκε: -

    Ιδιότητα: ΔΕΠ ΗΜΜΥ.
    Υπενθύμιση ... Η ομιλία μόλις ξεκίνησε στο Αμφιθέατρο του Κτιρίου Επιστημών.

  • Συντάχθηκε 08-06-2017 17:57 από Michail Lagoudakis Πληροφορίες σύνταξης

    Email συντάκτη: lagoudakis<στο>tuc.gr

    Ενημερώθηκε: -

    Ιδιότητα: ΔΕΠ ΗΜΜΥ.
    Η παραπάνω ομιλία είναι διαθέσιμη από το κανάλι YouTube της Σχολής ΗΜΜΥ:

    http://www.youtube.com/watch?v=Z3wNnm_8KwQ

© Πολυτεχνείο Κρήτης 2012