Συντάχθηκε 19-04-2016 13:21
από Esthir Gelasaki
Email συντάκτη: egelasaki<στο>tuc.gr
Ενημερώθηκε:
-
Ιδιότητα: υπάλληλος.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών
Πρόγραμμα Μεταπτυχιακών Σπουδών
ΠΑΡΟΥΣΙΑΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ
ΕΥΑΓΓΕΛΟΥ ΜΙΧΕΛΙΟΥΔΑΚΗ
με θέμα
Σταδιακή Μάθηση Σχεσιακής Δομής σε Μαρκωβιανά Λογικά Δίκτυα με χρήση Αξιωμάτων στο Γνωστικό Υπόβαθρο
Online Structure Learning for Markov Logic Networks using Background Knowledge Axiomatization
Εξεταστική Επιτροπή
Αναπληρωτής Καθηγητής Μιχαήλ Γ. Λαγουδάκης (επιβλέπων)
Καθηγητής Μίνως Γαροφαλάκης
Δρ. Αλέξανδρος Αρτίκης (Πανεπιστήμιο Πειραιά, ΕΚΕΦΕ Δημόκριτος)
Περίληψη
Πολλά ενδιαφέροντα προβλήματα σήμερα χαρακτηρίζονται τόσο από αβεβαιότητα όσο και από περίπλοκη σχεσιακή δομή. Ως εκ τούτου, η πιθανοτική μάθηση σχεσιακής δομής είναι ένα δημοφιλές θέμα έρευνας στον τομέα της τεχνητής νοημοσύνης και της μηχανικής μάθησης. Η περιοχή έρευνας της Στατιστικής Σχεσιακής Μάθησης (Statistical Relational Learning) επιχειρεί να ανακαλύψει τρόπους για αποτελεσματική αναπαράσταση, πιθανοτικό συμπερα- σμό, και μηχανική μάθηση σε προβλήματα που διέπονται από αυτά τα χαρακτηριστικά. Αυτή η διατριβή μελετά το πρόβλημα της πιθανοτικής μάθησης σχεσιακής δομής ύπο την σκοπιά των Μαρκωβιανών Λογικών Δικτύων (Markov Logic Networks). Ειδικότερα, εξετάζει το ζήτημα της αξιοποίησης αξιωμάτων που προυπάρχουν ως γνωστικό υπόβαθρο ώστε να περιορίσει αποτελεσματικά το χώρο των πιθανών δομών μαθαίνοντας κανόνες που υπόκεινται σε ει- δικά χαρακτηριστικά που ορίζονται από αυτά τα αξιώματα. Επικεντρωνόμαστε στην περιοχή της συμβολικής αναγνώρισης γεγονότων υπό συνθήκες αβεβαιότητας, χρησιμοποιώντας τα αξιώματα που ορίζονται από μια πιθανοτική παραλλαγή του Λογισμού Συμβάντων (MLN−EC) ως γνωστικό υπόβαθρο. Χρησιμοποιούμε μια σταδιακή στρατηγική, προκειμένου να χειρι- στούμε αποτελεσματικά τα μεγάλα σύνολα εκπαίδευσης και να βελτιώσουμε σταδιακά την δομή σε κάθε βήμα της διαδικασίας. Αποδείκνυουμε την αποτελεσματικότητα της μεθόδου μας μέσα από πειράματα στον τομέα της αναγνώρισης ανθρώπινων δραστηριοτήτων, χρησι- μοποιώντας ένα διαθέσιμο στο κοινό σύνολο δεδομένων από βιντεοεπιτήρηση.
Abstract
Many domains of interest today are characterized by both uncertainty and complex relational structure. Therefore, probabilistic structure learning is a popular research topic in artificial intelligence and machine learning. The research area of Statistical Relational Learning (SRL) specifically attempts to effectively represent, reason, and learn in domains that are governed by these characteristics. This thesis studies the problem of probabilistic structure learning under the Markov Logic Networks (MLN) framework. In particular, it addresses the issue of exploiting the background knowledge axiomatization to effectively constrain the space of possible structures by learning clauses subject to specific characteristics defined by these axioms. We focus on the domain of symbolic event recognition under uncertainty by using the axiomatization of a probabilistic variant of the Event Calculus (MLN−EC) as background knowledge. We employ an online strategy in order to effectively handle large training sets and incrementally refine the previously learned structure. We demonstrate the effectiveness of our method through experiments in the domain of activity recognition, using a publicly available benchmark dataset for video surveillance.
Τόπος: Λ - Κτίριο Επιστημών/ΗΜΜΥ, ΑΙΘΟΥΣΑ ΣΥΝΕΔΡΙΑΣΕΩΝ
Έναρξη: 21/04/2016 13:00
Λήξη: 21/04/2016 14:00