

Attention-aware Real-time Computer Graphics

PhD Candidate

George Alex Koulieris

Supervisor

Assoc. Prof. Katerina Mania

Collaborators

Dr George Drettakis, Rendering and Virtual Environments with Sound (REVES), INRIA Sophia Antipolis, France Prof. Douglas W. Cunningham, Brandenburgische Technische Universitat Cottbus, Germany

Motivation for our research

- Successfully predicting visual attention can significantly improve many aspects of computer graphics.
 - scene design
 - interactivity
 - rendering
- Exploit —the never before employed in attention predictions scene semantics.
- Design attention-aware applications.

Attention Modeling - Low Level

Visual perception is currently divided into two major areas of research:

• Low-level vision (bottom-up) deals with the extraction of basic physical properties such as color and depth. [Marr 1982]

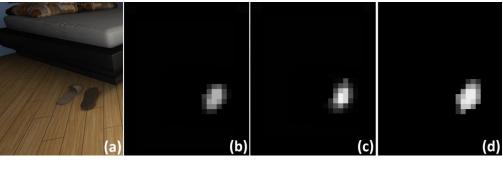
Attention Modeling - High Level

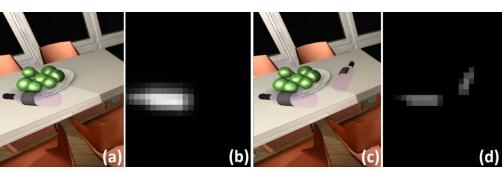
High-level vision (top-down) maps visual representations to meaning and semantics. [Henderson 1999]

✓ Also includes the interaction of cognition and perception along with short-term memory for visual information scene/object identification amongst others.

Object-centered Attention (1)

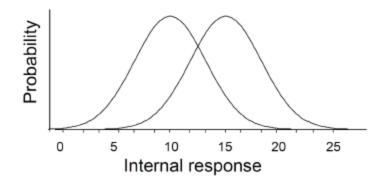
- Global context representations termed memory/scene schemata. [Bartlett 1932]
 - integrate pre-existing knowledge with recently acquired from attentional processing
 - a scene is comprised by consistent objects, i.e. objects expected to be found in a specific context and inconsistent objects, i.e. objects that are not normally existent in a given scene and thus salient
- Attention on singleton objects. [Theeuwes and Godijn 2002]
 - singletons ordinarily capture attention
- Attention on violations of canonical form. [Becker 2007]
 - violations of canonical form are detected peripherally, are semantically salient and can affect the likelihood of fixating on an item





Object-centered Attention (2)

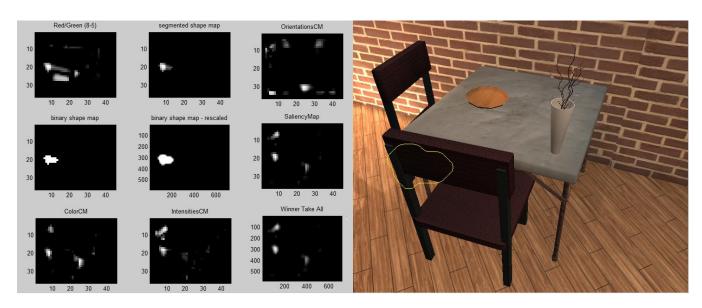
- Objects belonging in a set are contextually compound. [Koffka 1935]
 - An object positioned in-between a set of similar objects but dissimilar from those in the set, is hypothesized to pop out even when not salient in terms of e.g. color
- Recurring fixations are generated for objects inconsistent with the context or in a non-canonical form. [Henderson 1999]
 - temporal context
- A single salient feature in an image pops-out more intensely than when several salient features exist. [Frintrop 2010]
 - feature uniqueness



Object-centered Attention

- High level semantics have a strong influence on:
 - eye movements over the scene by guiding attention
 - fixation time on objects
- Eyes are mostly drown to important parts of the scene.
 - parts with higher entropy/informativeness
- Differential Weighting Model (DWM) [Eckstein 1998]

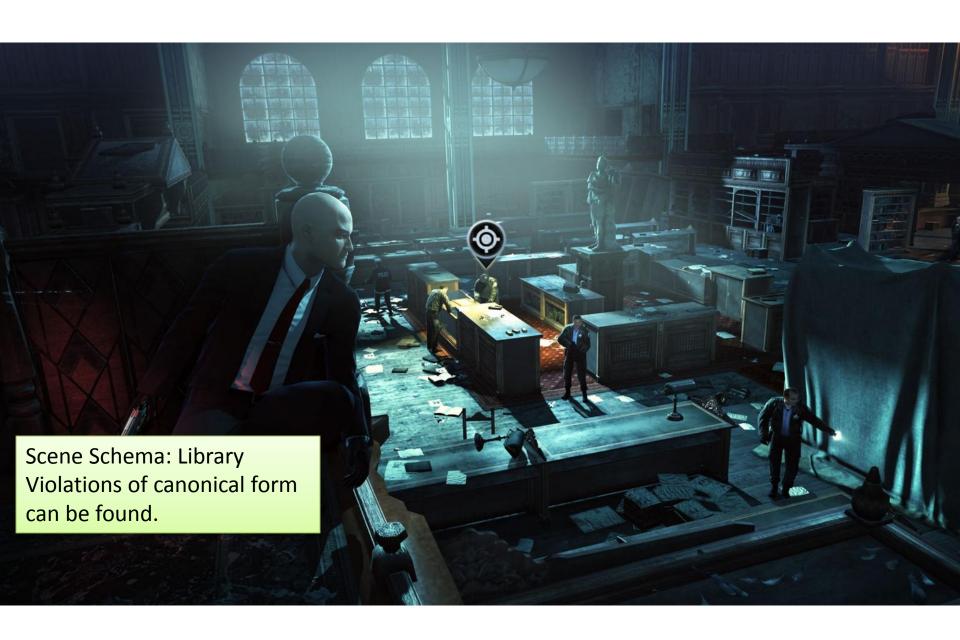
$$LR_{j,x,y,f} = \frac{l_{j,x,y,f}(\lambda_{j,x,y,f}|s)}{l_{j,x,y,f}(\lambda_{j,x,y,f}|n)} = exp\left(\frac{\lambda_{j,x,y,f}d'_{j} - 0.5d'_{j}^{2}}{\sigma^{2}}\right)$$



Parameters for the model obtained via multiple perceptual experiments.

Obtaining Model Parameters

Low-level vs High Level Saliency



Attention in Games

- Object-centered attention can be observed in gaming contexts.
- Schema effects are expected in ecologically valid spaces.
- Real-life and fictitious objects are abundant and affecting attention.
- In the following slides screenshots from the games
 - Hitman Absolution
 - Heavy Rain
 - Alternativa

are presented, showing the aforementioned attentional phenomena in context.

Game Balancing

 We designed a game level editor that automatically adjusts game level difficulty based on object saliency.

Level-of-Detail (1)

C-LOD allows complex shaders to run on mobile devices.

subsurface scattering

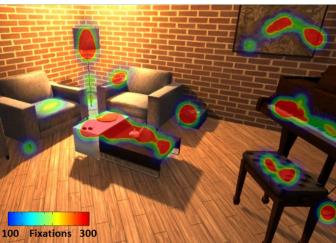
tessellation

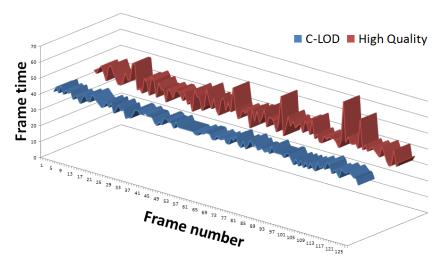
dirt/aging

Gabor noise

particle effects

complex/procedural materials




Level-of-Detail (2)

Validation (1)

Validation (2)

Publications

- Koulieris, G.A., Drettakis, G., Cunningham, D., Mania, K. (2014). An Automated High Level Saliency Predictor for Smart Game Balancing. ACM Transactions on Applied Perception (TAP)
- Koulieris, G.A., Drettakis, G., Cunningham, D., Mania, K. (to appear 2014). C-LOD: Context-aware Material Level Of Detail for Mobile Graphics. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 2014, Lyon, France
- McNamara, A., Mania, K., Koulieris, G.A., Itti, L. (to appear 2014). Attention-Aware Rendering, Mobile Graphics and Games. Half-day course, ACM Siggraph 2014, Vancouver, Canada
- Koulieris, G.A., Drettakis, G., Cunningham, D., Mania, K. (to appear 2014). High Level Saliency Prediction for Smart Game Balancing. Talk, ACM Siggraph 2014, Vancouver, Canada
- Koulieris, G.A., Drettakis, G., Cunningham, D., Sidorakis, N., Mania, K. (to appear 2014). Context-aware Material Selective Rendering for Mobile Graphics. Poster, ACM Siggraph 2014, Vancouver, Canada

